DESCRIPTION

The Eiger 500 Access Tower gives a work platform for use by up to two persons, with weight evenly distributed across the platform. The information and instructions included in this manual are provided to help get the best possible service from your Eiger 500 Access Tower. To ensure that the tower is used safely and responsibly, we strongly recommend that these instructions are read by everyone involved in its erection and use prior to assembling and using the tower, and that the recommendations are followed at all times.

SAFETY

Before using this access tower and to avoid personal injury, carefully read and understand these instructions. If there is anything you do not understand, DO NOT use this access tower, contact the supplier for advice. Make sure you are aware of all safety requirements and that this access tower is suitable for the task you wish to undertake. The work area must be cordoned off to create a safe zone from the general public and bystanders. The safe zone must be a minimum of 3m radius or 1m greater than the platform height being used. This access tower must not be set up, used, moved or dismantled by persons who are under the influence of alcohol or drugs. Do not use this access tower if you are tired or unwell. This access tower must only be used by persons who are medically fit to do so. If you have any medical condition, are recovering from any medical condition or suffer from any mental or physical disability, you MUST seek professional medical advice before using this access tower. The persons assembling this tower must be competent and qualified to do so.

Weights

The tower itself, regardless of size, has a maximum total Safe Working Load (SWL) of 950Kg. This is the maximum load that can be placed on the castors. When checking the SWL for your tower, you must firstly deduct the towers self weight from its overall SWL to give you the maximum payload (user plus tools and materials). You must also ensure that a platforms SWL is not exceeded.

Do not overload the platform(s) beyond the stated weight loading. Single platform up to 275Kg evenly distributed or 550Kg when used as a pair. The maximum number of working platforms per tower must not exceed two.

You MUST perform a risk assessment before using this access tower to ensure your safety and the safety of others. Do not use this access tower where there are overhead power lines or similar hazards within your reach and that of the tower. If leaving an erected tower unattended you must block access to the tower by unauthorised persons. Use suitable mesh fencing or boarding to make access impossible. If you cannot block access, the tower MUST be dismantled. Do not suspend the tower from another structure.
SAFETY Cont....

Only carry tools and materials with you when ascending or descending the tower if they are safely retained in a tool belt and do not restrict your free movement. Tools / materials may be hoisted to the deck via a rope. **PROPERLY ASSESS THE RISK METHOD!**

Do not lean from the tower and never apply undue side force. Maximum permitted side load must not exceed 20Kg (200N). Never use boxes, steps or similar items to gain additional height. Do not stand on the toeboards, horizontal or diagonal braces. Always use the towers built in ladders to access platforms and climb from inside the tower NEVER from outside. When climbing, always keep your feet in the middle of the rungs and grip the upper rungs with your hands NEVER the sides.

When winds exceed Beaufort force 4, cease to use the tower. Always be aware that using the tower in situations such as unclad or open ended buildings or on the corners of buildings could cause additional wind loading of the tower structure.

Wind Speeds

<table>
<thead>
<tr>
<th>Force</th>
<th>Peak Mph</th>
<th>Peak Kph</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>18</td>
<td>29</td>
<td>Moderate breeze - raises dust and loose paper</td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td>50</td>
<td>Strong breeze - difficult to use umbrella</td>
</tr>
<tr>
<td>8</td>
<td>46</td>
<td>74</td>
<td>Gale force - walking is difficult</td>
</tr>
</tbody>
</table>

PREPARATION

Clear the floor area of all obstacles and debris. Where possible sweep the floor. Check the ground upon which the tower is to be used is capable of supporting the combined weight of the tower and any necessary loading. The ground should be level and any slope should be within the scope of the adjustable legs. Ensure all tools and equipment required to erect the tower are available and on site.

Check each component for condition and correct operation BEFORE you start assembling the tower. Any faulty or damaged items MUST be replaced before assembling the tower. As you inspect each part, segregate types to make the task easier.

COMPONENTS

Braces....

Both horizontal and diagonal braces are fitted with triggered hooks at both ends. The triggers, when operated, pull back to allow the hook to be placed over the tubing used on the tower. Horizontal braces are also used as guardrails.

All brace hooks (except the first base assembly horizontal braces) must be attached to the top of frame horizontal tube. Always double check that each hook is positively locked onto the tubing before using the tower.

The brace hook trigger mechanisms are colour coded to show which are horizontal braces and which are diagonal braces. Horizontal brace triggers are coloured red and diagonal brace triggers are coloured blue.

CLIPS & CLAMPS

Frame clips are a spring clip fitted with a short pin that locates into a retaining hole on the frame and the hole at the top of the frame spigot. The clips are used to lock the frames together when placed one on top of the other.

Stabiliser clipp.....

The stabiliser clip is used to retain the extendable leg on the telescopic and semi jumbo stabilisers.

Stabiliser coupler clamp.

The coupler clamps are used to secure the stabilisers to the vertical frame tubes.

Wind-lock catch.

The wind-lock catch is fitted to one end of all platforms and is a gravity applied hook which drops over and around the horizontal frame tube. The catch is used to prevent the platform from being lifted by gusts of wind.

TYING IN

Please refer to PASMA guide ‘Tying in Mobile Towers’ available for download at http://pasma.org.uk/shop or contact PASMA for a hard copy. Tel. 0845 230 4041

DISMANTLING THE TOWER

Dismantle the tower by reversing the erection sequence. You MUST always be protected by a full set of guardrails when standing on a platform and removing components.

EQUIPMENT MAINTENANCE & CLEANING

Keep all components clean and free from contaminants. If any part becomes contaminated with paint, acid, oils or similar products the tower must not be used until the effected components have been cleaned and re-inspected.

TRANSPORTATION & STORAGE

All components should be stored in a dry location where they will be protected from adverse weather conditions. When storing or transporting, keep frames upright and platforms flat. Do not stack excessively to avoid stress damage.

INSTRUCTION LEAFLET AVAILABILITY

Keep these instructions in a safe place and ensure that they are made available to anyone using, constructing or dismantling the tower. If these instructions become lost or illegible, replacements should be acquired from the manufacturer.

THROUGH THE TRAPDOOR (3T) SYSTEM

This method of construction reduces the risk of a fall from height. You will complete an ‘assembly / access’ platform level from which is added the ‘next lift’ of frames, braces and platform(s) until the final working height of the tower is achieved.

Using standard components, the erector will always be protected by a set of guardrails. By adopting the 3T method, the erector sits through the hatch of the platform with their feet resting on the frame rungs. In this position the erector can attach the guardrail braces at one end of the tower, access the platform and attach the other end of the guardrail braces at the opposite end of the tower.

DAMAGED COMPONENTS

Damaged components found during inspection must be quarantined until assessed and repaired by a qualified repairer or replaced with new components.

DO NOT use damaged components in the tower structure.

BALLAST

Where shown in the component list, ballast must be used to stabilise against overturning. Only use solid materials as ballast (i.e. no loose materials) and position to avoid overloading individual components. Ballast should be supported by the base of the tower and securely fastened to prevent removal.

EQUIPMENT MAINTENANCE & CLEANING

Where shown in the component list, ballast must be used to stabilise against overturning. Only use solid materials as ballast (i.e. no loose materials) and position to avoid overloading individual components. Ballast should be supported by the base of the tower and securely fastened to prevent removal.

TEN POINT PRE-USE CHECK LIST

1. All Components Free From Damage
2. Castors Locked
3. Tower is Vertical (If not, level using adjustable legs)
4. Coupler Clamps secure
5. All Guardrails in place
6. Brace Hooks Locked Correctly
7. Windlock Catches Engaged
8. Frame and Stabiliser Clips Engaged
9. Toeboards Correctly Attached
10. Risk Assessment Completed
BUILD PROCESS

Step 1.
Insert castor/adjustable leg assemblies into base of 4 rung ladder frame and one 4 rung frame, allowing approximately 75mm of extended leg for levelling. Press down firmly on the braking mechanism to lock castors.

Step 2.
Fit a horizontal brace onto the vertical tube of one frame, resting directly on the first horizontal tube. Ensure that the brace hook trigger faces to the outside of the tower.

Step 3.
Join the second 4 rung frame to the first ensuring that the brace hook is resting on the opposite horizontal rung. Fit the second brace to the horizontal tubes as shown with hook apertures facing downwards. Level around base of tower using spirit level, making adjustments as necessary to adjustable legs until the frames have an inclination no more than 1% from the vertical.

Step 4.
Attach first hatch platform on the second rung of frames. Attach two diagonal braces from the first rung to the third rung of the frames as shown. Attach four horizontal braces on the third and fourth rungs as shown ensuring the hooks are facing downwards.

Step 5.
Locate next lift of 4 rung frames and fit three diagonal braces as shown. Attach stabilisers to each corner of the tower. Please refer to the ‘Stabilisers’ section for details on achieving an optimum stabiliser footprint.

STABILISERS
Stabilisers shall always be fitted where specified, these increase the stability as a free standing structure. Best effect is obtained from the stabilisers when they are arranged in a footprint as near to a square (see fig. 1).

When using the tower against a wall, they may be positioned in fig. 2, but the wall must be at least two thirds the height of the top working platform. When locating stabilisers on the towers, maximum stability will be achieved by positioning at an angle of 45 degrees. Extend the leg to achieve maximum leg extension and ensure that the top coupler is positioned underneath the nearest horizontal frame tube. Securely lock the top coupler before attaching the lower arm to the vertical frame tube. Ensure that the rubber foot pad is in contact with the ground and that the ground can support the weight of the tower and stabilisers.

GETTING STARTED
The Eiger 500 tower is available in two base sizes, 850mm by a 1.8m or 2.5m platform length. The tower will be supplied with various height frames and you must always start with the smallest size frames first. The following instructions deal with a tower using 4 rung frames at the start, if supplied with 2 rung frames as well, then start with the 2 rung frames first.

Where you have both 2 rung and 3 rung, you must use the 2 rung first and the 3 rung next, with (where applicable) 4 rung frames at the top. The first platform needs to be carefully positioned to ensure that the remaining tower is constructed safely, use the chart below to find the exact position for the platform height you are erecting.

The access tower requires a minimum of two persons to assemble it, do not attempt to assemble the tower on your own.

Never stand on an un-guardrailed platform above the first rung of a tower. If your risk assessment shows it necessary, you may also need to guardrail platforms at this level.

PLATFORM REPOSITIONING TABLE

<table>
<thead>
<tr>
<th>Tower Platform Height</th>
<th>Swap platform (Rung)</th>
<th>Platform 1 (Rung)</th>
<th>Platform 2 (Rung)</th>
<th>Platform 3 (Rung)</th>
<th>Platform 4 (Rung)</th>
<th>Platform 5 (Rung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10.7</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>11.2</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>11.7</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>12.2</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>
Step 6.
Attach hatch platform to the sixth rung of the tower.

Step 9.
Fit the toeboard set ensuring the edges of the toeboard overlap the platform edges on all four edges.

Step 8.
Access the platform and secure the horizontal guardrail braces and last diagonal brace at the opposite end of the tower.

NOTE: If building the tower beyond the 3.20m level, continue with steps 5 to 8 until desired working height is achieved, then follow step 9.

The table below provides weight data for various components used in the setup:

<table>
<thead>
<tr>
<th>COMPONENT SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>Castor</td>
</tr>
<tr>
<td>Adjustable Leg</td>
</tr>
<tr>
<td>2 Rung Ladder Frame</td>
</tr>
<tr>
<td>2 Rung Frame</td>
</tr>
<tr>
<td>3 Rung Ladder Frame</td>
</tr>
<tr>
<td>3 Rung Frame</td>
</tr>
<tr>
<td>4 Rung Ladder Frame</td>
</tr>
<tr>
<td>4 Rung Frame</td>
</tr>
<tr>
<td>Hatch Platform</td>
</tr>
<tr>
<td>Horizontal Brace</td>
</tr>
<tr>
<td>Diagonal Brace</td>
</tr>
<tr>
<td>Telescopic Stabiliser</td>
</tr>
<tr>
<td>Ballast Weight</td>
</tr>
</tbody>
</table>

UNIT WEIGHT

WH - Working Height & PH - Platform Height

Total tower weight 1.8m: 67.95 kg

Total tower weight 2.5m: 78.60 kg